skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pickl, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We rigorously justify the mean-field limit of an N -particle system subject to Brownian motions and interacting through the Newtonian potential in $${\mathbb {R}}^3$$ R 3 . Our result leads to a derivation of the Vlasov–Poisson–Fokker–Planck (VPFP) equations from the regularized microscopic N -particle system. More precisely, we show that the maximal distance between the exact microscopic trajectories and the mean-field trajectories is bounded by $$N^{-\frac{1}{3}+\varepsilon }$$ N - 1 3 + ε ( $$\frac{1}{63}\le \varepsilon <\frac{1}{36}$$ 1 63 ≤ ε < 1 36 ) with a blob size of $$N^{-\delta }$$ N - δ ( $$\frac{1}{3}\le \delta <\frac{19}{54}-\frac{2\varepsilon }{3}$$ 1 3 ≤ δ < 19 54 - 2 ε 3 ) up to a probability of $$1-N^{-\alpha }$$ 1 - N - α for any $$\alpha >0$$ α > 0 . Moreover, we prove the convergence rate between the empirical measure associated to the regularized particle system and the solution of the VPFP equations. The technical novelty of this paper is that our estimates rely on the randomness coming from the initial data and from the Brownian motions. 
    more » « less
  2. Abstract In this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N $$d$$ d -dimensional bosons for large N . The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form $$(N-1)^{-1}N^{d\beta }v(N^\beta \cdot )$$ ( N - 1 ) - 1 N d β v ( N β · ) for $$\beta \in [0,\frac{1}{4d})$$ β ∈ [ 0 , 1 4 d ) . We derive a sequence of N -body functions which approximate the true many-body dynamics in $$L^2({\mathbb {R}}^{dN})$$ L 2 ( R dN ) -norm to arbitrary precision in powers of $$N^{-1}$$ N - 1 . The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution. 
    more » « less